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We have searched in pp collisions at
p
s = 1.8 TeV for events with three

charged leptons and missing transverse energy. In the Minimal Supersym-

metric Standard Model, we expect trilepton events from chargino-neutralino

(~��1 ~�
0
2) pair production, with subsequent decay into leptons. We observe

no candidate e+e�e�, e+e���, e��+�� or �+���� events in 106 pb�1 in-

tegrated luminosity. We present limits on the sum of the branching ratios

times cross section for the four channels: �
~��
1
~�0
2

�BR(~��1 ~�02 ! 3` + X) <

0:34 pb, M
~��
1

> 81.5 GeV/c2 and M~�0
2

> 82.2 GeV/c2 for tan� = 2,

� = �600 GeV/c2 and M~q = M~g.

PACS numbers: 14.80.Ly, 12.60.Jv, 13.85.Rm
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The Minimal Supersymmetric Standard Model (MSSM) [1] contains two Higgs doublets
and supersymmetric partners to all the Standard Model (SM) particles. The superpartners
of the electroweak gauge bosons and Higgs bosons are two charged and four neutral fermions
(e�'s). Further assumptions, namely the Grand Uni�ed Theory hypothesis provided by Su-
pergravity [2], Supergravity-inspired slepton/sneutrino mass constraints [3], degeneracy of
�ve of the squarks, and R-parity conservation, lead to models with only six parameters.
R-parity conservation implies the creation of superpartners in pairs and the stability of the
lightest supersymmetric partner (LSP). Within this framework we expect, for certain regions
of parameter space, a measurable rate for the reaction q�q0!~��1 ~�

0
2, where ~��1!~�01`

�� and
~�02!~�01`

+`�, and ~�01 is the LSP. The � and two LSPs do not interact with the detector and
manifest themselves as missing energy. The resulting �nal state is three isolated charged
leptons plus missing energy [4]. In this Letter, we report on a search for direct production
of ~��1 ~�

0
2, via virtual W� s-channel and virtual squark t-channel diagrams, in the trilepton

channels e+e�e, e+e��, e�+�� and �+���. Additional trilepton production arising from
squark and gluino cascade decays was not included. We add 87 pb�1 of data recorded in
1994-95 to a previously analyzed sample of 19 pb�1 collected in 1992-93 [5].

The Collider Detector at Fermilab (CDF) is described in detail elsewhere [6]. The com-
ponents of the detector relevant to this analysis are the vertex chamber, which provides
r-z tracking information; the central tracking chamber, which is situated inside a 1.4 T
solenoidal magnetic �eld and provides a combination of r-�, z and transverse momentum
(pT ) information for charged particles; the central (j�j < 1:1) and endplug (1:1 < j�j < 2:4)
electromagnetic calorimeters, which are located outside the solenoid and are segmented in
a projective tower geometry; and the central muon chambers. We de�ne pseudorapidity
� � � ln tan(�=2) and � and � to be the polar and azimuthal angles with respect to the
beam axis.

We begin with a sample of 87 pb�1 recorded in 1994-95, which contains 3:3� 106 events
that have an electron or muon with pT > 8 GeV/c and j�ej < 1:1 or j��j < 0:6, and an
additional charged lepton (excluding taus) with pT > 3 GeV/c and j�ej < 2:4 or j��j < 1:0.
We select events from this sample by requiring an electron with Ee

T > 11 GeV and j�ej < 1:1
or a muon with p�T > 11 GeV/c and j��j < 0:6. We require two additional charged leptons
with Ee

T > 5 GeV and j�ej < 2:4 or p�T > 4 GeV/c and j��j < 1:0. At least one lepton
passing the high threshold cut must pass stringent lepton identi�cation cuts [5{9]. To
improve the integrity of these events, we require that all three leptons originate from a
common vertex within 60 cm of the center of the detector. The 60 cm requirement is to
preserve the projective tower geometry of the calorimetry. We �nd 59 events meeting these
requirements.

The principal backgrounds to the ~��1 ~�
0
2 signature are real trilepton events from W�Z0,

Z0Z0, t�t and b�b and dilepton plus fake lepton [10] events from W+W�, Z0 and the Drell-
Yan process. To remove background from b�b, c�c and t�t production and fake leptons, each
lepton must be isolated, where isolation is de�ned by requiring less than 2 GeV ET in

the calorimeter inside an �-� cone of radius �R �
q
(��)2 + (��)2 = 0.4 around the

lepton, excluding the energy deposited by the lepton. There must be at least one e+e� or
�+�� pair, the �-� distance between any two leptons (�R``) must be greater than 0.4 (to
remove background from b�b production, as well as some anomalously reconstructed cosmic

5



ray events) and the di�erence in azimuthal angle between the two highest pT leptons (��`1`2)
in the event must be less than 170� (to remove background from the Drell-Yan process and
cosmic rays) [9]. Events containing a same avor `+`� pair with invariant mass in the
regions of the resonances J= (2.9-3.3 GeV/c2), � (9-11 GeV/c2) and Z0 (75-105 GeV/c2)
are removed. These requirements select 6 events (see Table I). In the previous data sample [5]
these criteria selected zero events.

The presence of two LSPs and a neutrino in the �nal state of the signal can lead
to substantial missing transverse energy (6ET ). The dominant remaining backgrounds,
b�b production and the Drell-Yan process, do not have signi�cant 6ET . As seen in Table I,
requiring 6ET> 15 GeV reduces the background by 85% while retaining 82% of the expected
signal for M

~��
1

� 70 GeV/c2. No events pass the 6ET cut.
For the remainder of the analysis we combine this data with the previous

19�1 pb�1 sample [5] for a total Run I integrated luminosity (
R
Ldt) of 106�7 pb�1 and

zero candidate trilepton events.
To determine the SM background and the signal acceptance, we use the ISAJET Monte

Carlo program [11] with a CDF detector simulation. For background due to vector boson pair
production we use theoretical calculations of cross sections and branching ratios [12]. For
background due to t�t production and the Drell-Yan process we use cross sections measured by
CDF [7]. The rate of lepton misidenti�cation was determined from a W�! `� data sample
to be (0.29�0.04)% per event. After all cuts are applied the total expected background is
1.2�0.2 events in 106 pb�1.

The total detection e�ciency (�tot) is a product of the trigger e�ciency, the isolation
e�ciency, the lepton identi�cation e�ciency and a geometric and kinematic acceptance
factor. The triggers used were single lepton and dilepton triggers, with single lepton trigger
e�ciencies of �trige = (87+4

�5)% above 11 GeV and �trig� = (87 � 3)% above 11 GeV/c. We
determine the lepton isolation and identi�cation e�ciencies by studying the second lepton
in Z0!`+`� events. The isolation e�ciency is (90�4)% per lepton. The per-event trilepton
identi�cation e�ciency ranges from (59�1)% to (82�1)%, depending on the combination of
leptons in the event. The geometric and kinematic acceptance is determined using ISAJET
and the CDF detector simulation. The total e�ciency (�tot) is mainly a function of the
~��1 and ~�02 masses, which are nearly equal for the region of the search. The e�ciency
increases linearly from 3% at 50 GeV/c2 to 12% at 100 GeV/c2, because massive ~��1 and
~�02 lead to more central and more energetic leptons which are detected with higher e�ciency.

We see no signal candidates and thus set limits on the available parameter space. A
particular point in parameter space is excluded if the predicted number of events exceeds the
number of events (s) expected at the 95% con�dence level limit given that zero events were
observed. The predicted number of events is a function of the cross section times branching
ratio (�(p�p!~��1 ~�

0
2+X)�BR(~��1 ~�

0
2 ! 3`+X)) and �tot�

R
Ldt. We calculate cross section times

branching ratio (�� BR) using ISAJET 7.20 with CTEQ-3L [13] parton distribution functions
and calculate s by convolving the total systematic uncertainty as a Gaussian smearing with a
Poisson distribution. The total systematic uncertainty is 15%, which includes uncertainty in
the total integrated luminosity (�7%), the parton distribution (�7%), the trigger e�ciency
(�6%), and the trilepton-�nding e�ciency (�2%), leading to s = 3:1. To calculate the
uncertainty due to the parton distribution function we compare CTEQ-3L with a variety of
other parton distribution functions. We use the largest uncertainty in the e�ciency of any
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single lepton trigger for all events.
Using the model assumptions listed in the �rst paragraph, four parameters determine

the ~��1 and ~�02 masses, production cross sections and decay branching ratios: the ratio of the
Higgs vacuum expectation values (tan�), the Higgsino mass parameter (�), the gluino mass
(M~g) and the squark-to-gluino mass ratio (M~q=M~g). To make the analysis more independent
of details of the Higgs sector, we consider a region in the MSSM where there is no signi�cant
chargino or neutralino branching fraction into Higgs particles. Technically, we do this by
choosing the mass of the pseudoscalar Higgs (MA) to be above the chargino/neutralino mass
and use MA = 500 GeV/c2. The production and decay of ~��1 ~�

0
2 are independent of the

remaining MSSM parameter, the trilinear top squark coupling (At). We �x At = �= tan�
for consistency with other CDF analyses [14]. The search is more sensitive at low values
of tan �; tan�>�10 leads to higher branching ratios to � 's, for which we do not search. We
consider 1:1 � tan� � 8. We use �1000 GeV/c2 < � < �200 GeV/c2 because the search is
more sensitive to negative values of � and j�j is expected to be on the order of the energy
scale at which supersymmetric phenomena should be observable. Also, small j�j increases
the Higgsino content of the ~��1 and ~�02, which decreases the branching ratio to leptons.
ISAJET requires M~g and M~q as input parameters to calculate M~��

1

. The slepton/sneutrino

mass constraints [3] use M~g and M~q to determine Mè and Me�; large di�erences in M~g and M~q

lead to heavy sleptons and sneutrinos and decreases the branching ratio to leptons. Thus,
this analysis considers M~q=M~g > 1 to avoid invisible decays through light sneutrinos and
M~q=M~g < 2 to enhance leptonic �nal states. For the regions of parameter space we examine
M~g � 3M

~��
1

, so we use 150 GeV/c2� M~g � 340 GeV/c2.

Figure 1 shows the limit for a few representative points in the M
~��
1

� (��BR) plane.
All points above the solid line are excluded. For comparison, we include the result of the
D� collaboration [15]. D� reports the average ��BR; we use the sum. Figure 2 shows the
limit on M

~��
1

as a function of � and tan�. These limits are compared to the limits from

ALEPH [16] in Figure 2. The ALEPH result is from a search for all possible �nal states.
The OPAL, L3 and DELPHI collaborations report similar limits [17].

We also examined a string-inspired SU(5) � U(1) one-parameter supergravity model [18].
This model requires M

~��
1

<
� 87GeV/c2 and M~�0

2

<
� 91GeV/c2 and has a nearly maximized

trilepton branching ratio via ~�02 !
è
R` and è

R ! `~�01. As shown in Figure 3, we exclude most
of this model and set M

~��
1

> 80:5 GeV/c2, M~�0
2

> 86.7 GeV/c2 and ��BR(~��1 ~�
0
2!3`+X) <

0:48 pb.
In conclusion, we �nd no evidence for ~��1 ~�

0
2 production in 1.8 TeV p�p collisions and

set limits on ~��1 and ~�02 masses and ��BR within the framework of MSSM models which
have M

~��
1

�M~�0
2

�2M~�0
1

and three-body decays of ~��1 and ~�02. The strongest limit is

�
~��
1
~�0
2

�BR(~��1 ~�
0
2 !3`+X) < 0.34 pb, M

~��
1

> 81.5 GeV/c2 and M~�0
2

> 82.2 GeV/c2 for

tan � = 2, � = �600 GeV/c2 and M~q = M~g.
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TABLES

TABLE I. Events remaining after each cut in the 1994-95 data (87 pb�1). One Z0 event and

one J= event are removed with the resonance cuts. For comparison we indicate the expected

background (BG) and an expected signal from a representative MSSM Monte Carlo (MC) sample

(M~q =M~g = 200 GeV/c2, tan� = 2, � = �400 GeV/c2, M
~��
1

'M~�0
2

' 70 GeV/c2, �
~��
1
~�0
2

= 4:8 pb,

�tot = 6:7%).

Expected MSSM

Cut Events BG MC

Dilepton data set 3,270,488

Trilepton data set 59

� Isolation < 2 GeV 23

� Require e+e� or �+�� 23

� �R`` > 0:4 9

� ��`1`2 < 170� 8 9.6�1.5 6.2�0.6
� J= , �, Z0 removal 6 6.6�1.1 5.5�0.5
� 6ET> 15 GeV 0 1.0�0.2 4.5�0.4
Total Run I data (106 pb�1) 0 1.2�0.2 5.5�0.4
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FIG. 1. ��BR(~��1 ~�02!3`+X) versus ~��1 mass for representative points in the MSSM parameter

space, namely � = �400 GeV/c2, tan � = 2 and (a) M~q/M~g = 2.0, (b) M~q/M~g = 1.5, (c) M~q/M~g =

1.2 and (d) M~q/M~g = 1.0. BR is the summed branching ratio into the four trilepton modes (e+e�e,

e+e��, e�+�� and �+���). The solid line is the 95% con�dence level upper limit based on an

observation of zero events. We set a mass limit of 77.0 GeV/c2 when M~q=M~g. All MSSM points in

this plot yield three body decays of the ~��1 and ~�02. The D� limit [15] is for single trilepton mode

which we scale up by 4 to match our notation.
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FIG. 2. The experimental limit on M
~��
1

as a function of � for tan� = 2 and M~q = M~g (upper)

and as a function of tan� for � = �400 GeV/c2 and M~q = M~g (lower). The ALEPH limits

shown [16] are from a search for all possible �nal states. In this analysis Me� � 100 GeV/c2.

Minimal SUGRA models favor the region of small j�j values.
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FIG. 3. ��BR(~��1 ~�02!3` + X) versus ~��1 mass for the SU(5) � U(1) model [18]. This sets a

mass limit of 80.5 GeV/c2. In this model, the è
R is lighter than the ~�02 , resulting in two body

decays of the ~�02. Note that the acceptance for events from this model decreases at large ~��1 mass.

In this region, the LSP mass approaches that of the è, resulting in soft �nal state leptons which

are di�cult to detect.
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